
Totem Documentation
Release 1.4.0

Baptiste "Talus" Clavié

July 21, 2014

Contents

1 Reference Guide 3
1.1 Totem : Basic Usage . 3

i

ii

Totem Documentation, Release 1.4.0

Changeset calculator and handler for any type of complex data

Requires at least PHP 5.4. Compatible PHP 5.5, PHP 5.6, and HHVM

Contents 1

Totem Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Reference Guide

1.1 Totem : Basic Usage

Totem is a PHP 5.4 library helping you to calculate changes brought to you data. Sure, that does help much to know
what it does... Let me clarify then.

Let’s say you have a simple array, which looks like this

[’foo’ => ’bar’,
’baz’ => [’fubar’, ’fubaz’]]

And then, for some reasons, you need to alter the foo key, and instead of having the “bar” value, it should have the
“qux” value. So you are stuck with

[’foo’ => ’qux’,
’baz’ => [’fubar’, ’fubaz’]]

... And then, let’s say you want to say to the end-user “hey, something has changed !”. How do you know which key
has changed, without actually knowing it (think data edition through a form) ? The answer is simple, it’s Totem !

1.1.1 First step : Taking a bunch of Snapshots

Before you modify the data, you’ll first need to take a Snapshot, which will freeze its data a a given time (all of it).
To do that, you just need to instanciate a Totem\Snapshot object... Or, to be more precise, it depends on the root
type of your data. Currently, here are the built-in types :

• Totem\Snapshot\ArraySnapshot, if your root data is an array

• Totem\Snapshot\ObjectSnapshot, if your root data is an object.

• Totem\Snapshot\CollectionSnapshot, if your root data is a collection.

Warning: The Collection Snapshot is not a recursive snapshot. It will snapshots its arrays and objects, but not
its collections. It will consider them as arrays, as there is no easy way to determine what is a collection (except on
userland, like the root of the data), and what is the primary key of each elements in said collection.

1.1.2 Second Step : Calculate the diff between your two snapshots

Once you have at least two snapshots (one before your modification, the other one after that modification), you may
calculte the diff

3

Totem Documentation, Release 1.4.0

// let’s consider you have two snapshots : one "before" and one "after" the
// modifications
$set = $snapshot[’before’]->diff($snapshot[’after’]);

You have then a Totem\Set object, which is already computed. It is in fact a sort of a container, in which will be
stored all the modifications that happened since the “before” snapshot until the “after” snapshot. Each items of this set
may have two forms :

• a Totem\Set if the item was a snapshot material in the “before” snapshot and in the “after” snapshot ;

• a Totem\AbstractChange object if your data was completely changed (if it is a whole different array,
object, or whatever else – string, integer, boolean, you name it). This change can be represented in 3 states :

– a Totem\Change\Addition if the key was added in the new state ;

– a Totem\Change\Modification if the key was modified ;

– a Totem\Change\Removal if the key was removed from the data

1.1.3 Third and final step : manipulate your diff

Once you have your Totem\Set object, you have an access to each key that was modified ; if it is another
Totem\Set object, it means that a recursive changeset was created ; if it is only a Totem\AbstractChange,
you have access to the “old” value (what it was in the old snapshot), and the new value (what is is now)

// let’s consider you stored the result set in a ‘‘$set‘‘ variable
if ($set->hasChanged(’foo’)) {

$change = $set->getChange(’foo’);
var_dump($change->getOld(), $change->getNew()); // should dump "bar", "qux"

}

There, you have a fully functionnal changeset !

4 Chapter 1. Reference Guide

	Reference Guide
	Totem : Basic Usage

